Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Novel microwave assisted synthesis of ZnS nanomaterials

Identifieur interne : 000824 ( Main/Repository ); précédent : 000823; suivant : 000825

Novel microwave assisted synthesis of ZnS nanomaterials

Auteurs : RBID : Pascal:13-0090728

Descripteurs français

English descriptors

Abstract

A novel ambient pressure microwave assisted technique is developed in which silver and indium-modified ZnS is synthesized. The as-prepared ZnS is characterized by x-ray diffraction, UV-vis spectroscopy, x-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid-energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 W light bulb. These ZnS samples also show significantly higher photocatalytic activity than the commercially available TiO2 (Evonik-Degussa P-25).

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0090728

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Novel microwave assisted synthesis of ZnS nanomaterials</title>
<author>
<name sortKey="Synnott, Damian W" uniqKey="Synnott D">Damian W. Synnott</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin Street</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 8</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St.</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seery, Michael K" uniqKey="Seery M">Michael K. Seery</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St.</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hinder, Steven J" uniqKey="Hinder S">Steven J. Hinder</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>School of Engineering, University of Surrey</s1>
<s2>Guildford, Surrey, GU2 7XH</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Royaume-Uni</country>
<wicri:noRegion>Guildford, Surrey, GU2 7XH</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Colreavy, John" uniqKey="Colreavy J">John Colreavy</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin Street</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 8</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pillai, Suresh C" uniqKey="Pillai S">Suresh C. Pillai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin Street</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Irlande (pays)</country>
<wicri:noRegion>Dublin 8</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0090728</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0090728 INIST</idno>
<idno type="RBID">Pascal:13-0090728</idno>
<idno type="wicri:Area/Main/Corpus">001246</idno>
<idno type="wicri:Area/Main/Repository">000824</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0957-4484</idno>
<title level="j" type="abbreviated">Nanotechnology : (Bristol, Print)</title>
<title level="j" type="main">Nanotechnology : (Bristol. Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Band structure</term>
<term>Catalyst activity</term>
<term>Comparative study</term>
<term>Crystal defects</term>
<term>Cubic lattices</term>
<term>Electronic properties</term>
<term>Energy gap</term>
<term>Energy levels</term>
<term>Hexagonal lattices</term>
<term>II-VI semiconductors</term>
<term>Indium</term>
<term>Luminescence</term>
<term>Microwave radiation</term>
<term>Nanomaterial synthesis</term>
<term>Optical properties</term>
<term>Particle size</term>
<term>Phase transitions</term>
<term>Photocatalysis</term>
<term>Radiation effects</term>
<term>Silver</term>
<term>Titanium oxide</term>
<term>Ultraviolet photoelectron spectra</term>
<term>Ultraviolet visible spectrum</term>
<term>X-ray photoelectron spectra</term>
<term>X-ray spectra</term>
<term>XRD</term>
<term>Zinc oxide</term>
<term>Zinc sulfide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Hyperfréquence</term>
<term>Synthèse nanomatériau</term>
<term>Semiconducteur II-VI</term>
<term>Indium</term>
<term>Diffraction RX</term>
<term>Spectre RX</term>
<term>Spectre photoélectron UV</term>
<term>Spectre UV visible</term>
<term>Spectre photoélectron RX</term>
<term>Luminescence</term>
<term>Propriété optique</term>
<term>Dimension particule</term>
<term>Défaut cristallin</term>
<term>Structure bande</term>
<term>Sulfure de zinc</term>
<term>Argent</term>
<term>Réseau cubique</term>
<term>Réseau hexagonal</term>
<term>Oxyde de zinc</term>
<term>Bande interdite</term>
<term>Niveau énergie</term>
<term>Propriété électronique</term>
<term>Activité catalytique</term>
<term>Photocatalyse</term>
<term>Transition phase</term>
<term>Etude comparative</term>
<term>Effet rayonnement</term>
<term>Oxyde de titane</term>
<term>ZnS</term>
<term>In</term>
<term>ZnO</term>
<term>TiO2</term>
<term>6146</term>
<term>8116</term>
<term>7321</term>
<term>6470N</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Argent</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A novel ambient pressure microwave assisted technique is developed in which silver and indium-modified ZnS is synthesized. The as-prepared ZnS is characterized by x-ray diffraction, UV-vis spectroscopy, x-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid-energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 W light bulb. These ZnS samples also show significantly higher photocatalytic activity than the commercially available TiO
<sub>2</sub>
(Evonik-Degussa P-25).</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0957-4484</s0>
</fA01>
<fA03 i2="1">
<s0>Nanotechnology : (Bristol, Print)</s0>
</fA03>
<fA05>
<s2>24</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Novel microwave assisted synthesis of ZnS nanomaterials</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>SYNNOTT (Damian W.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SEERY (Michael K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HINDER (Steven J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>COLREAVY (John)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PILLAI (Suresh C.)</s1>
</fA11>
<fA14 i1="01">
<s1>Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Dublin Institute of Technology, Kevin Street</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Kevin St.</s1>
<s2>Dublin 8</s2>
<s3>IRL</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Engineering, University of Surrey</s1>
<s2>Guildford, Surrey, GU2 7XH</s2>
<s3>GBR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>045704.1-045704.6</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>22480</s2>
<s5>354000182510750260</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0090728</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Nanotechnology : (Bristol. Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>A novel ambient pressure microwave assisted technique is developed in which silver and indium-modified ZnS is synthesized. The as-prepared ZnS is characterized by x-ray diffraction, UV-vis spectroscopy, x-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid-energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 W light bulb. These ZnS samples also show significantly higher photocatalytic activity than the commercially available TiO
<sub>2</sub>
(Evonik-Degussa P-25).</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60A46</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C21</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B60D70N</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Hyperfréquence</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Microwave radiation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>XRD</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Spectre RX</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>X-ray spectra</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Spectre photoélectron UV</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Ultraviolet photoelectron spectra</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Spectre UV visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Ultraviolet visible spectrum</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Espectro UV visible</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Spectre photoélectron RX</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>X-ray photoelectron spectra</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Luminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Luminescence</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Propriété optique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Optical properties</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Défaut cristallin</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Crystal defects</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Structure bande</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Band structure</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Sulfure de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Zinc sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Zinc sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Argent</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Silver</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Réseau hexagonal</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Hexagonal lattices</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Propriété électronique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Electronic properties</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Propiedad electrónica</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Activité catalytique</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Catalyst activity</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Actividad catalítica</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Photocatalyse</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Photocatalysis</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Fotocatálisis</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>34</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>34</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>35</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>35</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Effet rayonnement</s0>
<s5>36</s5>
</fC03>
<fC03 i1="27" i2="3" l="ENG">
<s0>Radiation effects</s0>
<s5>36</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>Oxyde de titane</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="ENG">
<s0>Titanium oxide</s0>
<s5>37</s5>
</fC03>
<fC03 i1="28" i2="X" l="SPA">
<s0>Titanio óxido</s0>
<s5>37</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>ZnS</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>TiO2</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="33" i2="3" l="FRE">
<s0>6146</s0>
<s4>INC</s4>
<s5>65</s5>
</fC03>
<fC03 i1="34" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="35" i2="3" l="FRE">
<s0>7321</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="36" i2="3" l="FRE">
<s0>6470N</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>063</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000824 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000824 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0090728
   |texte=   Novel microwave assisted synthesis of ZnS nanomaterials
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024